18 resultados para HLA B27 antigen

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Both environmental factors and several predisposing genes are required to generate MS. Despite intensive research these risk factors are still largely unknown, the pathogenesis of MS demyelination is poorly understood, and no curative treatment exists. Both prevalence and familial occurrence of MS are exceptionally high in a Finnish population subisolate, Southern Ostrobothnia, presumably due to enrichment of predisposing genetic variants within this region. Previous linkage scan on MS pedigrees from Southern Ostrobothnia detected three main MS loci on chromosomes 5p, 6p (HLA) and 17q. Linkage studies in other populations have also provided independent evidence for the location of MS susceptibility genes in these regions. Further, these loci are syntenic to the experimental autoimmune encephalomyelitis (EAE) susceptibility loci of rodents. In this thesis work an effort was made to localize MS predisposing alleles of the linked loci outside the HLA region by studying familial MS cases from the Southern Ostrobothnia isolate. Analysis of the 5p locus revealed one region, flanking the complement component 7 (C7) gene. The identified relatively rare haplotype seems to have a fairly large effect on genetic susceptibility of MS (frequency MS 12%, controls 4%; p=0.000003, OR=2.73). Evidence for association with alleles of the region and MS was seen also in more heterogeneous populations. Convincingly, plasma C7 protein levels and complement activity correlated with the risk haplotype identified. The finding stimulated us to study other complement cascade genes in MS. No evidence for association could be observed with the complement component coding genes outside 5p. A scan of the 17q locus provided evidence for association with variants of the protein kinase C alpha (PRKCA) gene (p=0.0001). Modest evidence for association with PRKCA was observed also in Canadian MS families. Finally we used a candidate gene based approach to identify potential MS loci. Mutations of DAP12 and TREM2 cause a recessively inherited CNS white matter disease PLOSL. Interestingly, DAP12 and TREM2 are located in MS regions on 6p and 19q, and we tested them as potential candidate genes in the Finnish MS sample. No evidence for association with MS was observed. This thesis provides an example of how extended families from special populations can be utilized in fine-mapping of the linked loci. A first relatively rare MS variant was identified utilizing the strength of a Finnish population subisolate. This variant seems to have an effect on activity of the complement system, which has previously been suggested to have an important role in the pathogenesis of MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-stimulatory signals are essential for the activation of naïve T cells and productive immune response. Naïve T cells receive first, antigen-specific signal through T cell receptor. Co-stimulatory receptors provide the second signal which can be either activating or inhibitory. The balance between signals determines the outcome of an immune response. CD28 is crucial for T cell activation; whereas cytotoxic T lymphocyte associated antigen 4 (CTLA4) mediates critical inhibitory signal. Inducible co-stimulator (ICOS) augments cytokine expression and plays role in immunoglobulin class switching. Programmed cell death 1 (PDCD1) acts as negative regulator of T cell proliferation and cytokine responses. The co-stimulatory receptor pathways are potentially involved in self-tolerance and thus, they provide a promising therapeutic strategy for autoimmune diseases and transplantation. The genes encoding CD28, CTLA4 and ICOS are located adjacently in the chromosome region 2q33. The PDCD1 gene maps further, to the region 2q37. CTLA4 and PDCD1 are associated with the risk of a few autoimmune diseases. There is strong linkage disequilibrium (LD) on the 2q33 region; the whole gene of CD28 exists in its own LD block but CTLA4 and the 5' part of ICOS are within a same LD block. The 3' part of ICOS and PDCD1 are in their own separate LD blocks. Extended haplotypes covering the 2q33 region can be identified. This study focuses on immune related conditions like coeliac disease (CD) which is a chronic inflammatory disease with autoimmune features. Immunoglobulin A deficiency (IgAD) belongs to the group of primary antibody deficiencies characterised by reduced levels of immunoglobulins. IgAD co-occurs often with coeliac disease. Renal transplantation is needed in the end stage kidney diseases. Transplantation causes strong immune response which is tried to suppress with drugs. All these conditions are multifactorial with complex genetic background and multiple environmental factors affecting the outcome. We have screened ICOS for polymorphisms by sequencing the exon regions. We detected 11 new variants and determined their frequencies in Finnish population. We have measured linkage disequilibrium on the 2q33 region in Finnish as well as other European populations and observed conserved haplotypes. We analysed genetic association and linkage of the co-stimulatory receptor gene region aiming to study if it is a common risk locus for immune diseases. The 2q33 region was replicated to be linked to coeliac disease in Finnish population and CTLA4-ICOS haplotypes were found to be associated with CD and IgAD being the first non-HLA risk locus common for CD and immunodeficiencies. We also showed association between ICOS and the outcome of kidney transplantation. Our results suggest new evidence for CTLA4-ICOS gene region to be involved in susceptibility of coeliac disease. The earlier published contradictory association results can be explained by involvement of both CTLA4 and ICOS in disease susceptibility. The pattern of variants acting together rather than a single polymorphism may confer the disease risk. These genes may predispose also to immunodeficiencies as well as decreased graft survival and delayed graft function. Consequently, the present study indicates that like the well established HLA locus, the co-stimulatory receptor genes predispose to variety of immune disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of antigen-presenting cells (APCs), macrophages and dendritic cells (DCs), function at the interface of innate and adaptive immunity. Through recognition of conserved microbial patterns, they are able to detect the invading pathogens. This leads to activation of signal transduction pathways that in turn induce gene expression of various molecules required for immune responses and eventually pathogen clearance. Cytokines are among the genes induced upon detection of microbes. They play an important role in regulating host immune responses during microbial infection. Chemotactic cytokines, chemokines, are involved in migratory events of immune cells. Cytokines also promote the differentiation of distinct T cell responses. Because of the multiple roles of cytokines in the immune system, the cytokine network needs to be tightly regulated. In this work, the induction of innate immune responses was studied using human primary macrophages or DCs as cell models. Salmonella enterica serovar Typhimurium served as a model for an intracellular bacterium, whereas Sendai virus was used in virus experiments. The starting point of this study was that DCs of mouse origin had recently been characterized as host cells for Salmonella. However, only little was known about the immune responses initiated in Salmonella-infected human DCs. Thus, cellular responses of macrophages and DCs, in particular the pattern of cytokine production, to Salmonella infection were compared. Salmonella-induced macrophages and DCs were found to produce multiple cytokines including interferon (IFN) -gamma, which is conventionally produced by T and natural killer (NK) cells. Both macrophages and DCs also promoted the intracellular survival of the bacterium. Phenotypic maturation of DCs as characterized by upregulation of costimulatory and human leukocyte antigen (HLA) molecules, and production of CCL19 chemokine, were also detected upon infection with Salmonella. Another focus of this PhD work was to unravel the regulatory events controlling the expression of cytokine genes encoding for CCL19 and type III IFNs, which are central to DC biology. We found that the promoters of CCL19 and type III IFNs contain similar regulatory elements that bind nuclear factor kappaB (NF-kappaB) and interferon regulatory factors (IRFs), which could mediate transcriptional activation of the genes. The regulation of type III IFNs in virus infection resembled that of type I IFNs a cytokine class traditionally regarded as antiviral. The induction of type I and type III IFNs was also observed in response to bacterial infection. Taken together, this work identifies new details about the interaction of Salmonella with its phagocytic host cells of human origin. In addition, studies provide information on the regulatory events controlling the expression of CCL19 and the most recently identified IFN family genes, type III IFN genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kidney transplantation (Tx) is the treatment of choice for end stage renal disease. Immunosuppressive medications are given to prevent an immunological rejection of the transplant. However, immunosuppressive drugs increase e.g. the risk of infection, cancer or nephrotoxicity. A major genetic contributors to immunological acceptance of the graft are human leukocyte antigen (HLA) genes. Also other non-HLA gene polymorphisms may predict the future risk of complications before Tx, possibly enabling individualised immunotherapy. Graft function after Tx is monitored using non-specific clinical symptoms and laboratory markers. The definitive diagnosis of graft rejection however relies on a biopsy of the graft. In the acute rejection (AR) diagnostics there is a need for an alternative to biopsy that would be an easily repeatable and simple method for regular use. Frequent surveillance of acute or subclinical rejection (SCR) may improve long-term function. In this thesis, associations between cytokine and thrombosis associated candidate genes and the outcome of kidney Tx were studied. Cytotoxic and co-stimulatory T lymphocyte molecule gene expression biomarkers for the diagnosis of the AR and the SCR were also investigated. We found that polymorphisms in the cytokine genes tumor necrosis factor and interleukin 10 (IL10) of the recipients were associated with AR. In addition, certain IL10 gene polymorphisms of the donors were associated with the incidence of cytomegalovirus infection and occurrence of later infection in a subpopulation of recipients. Further, polymorphisms in genes related to the risk of thrombosis and those of certain cytokines were not associated with the occurrence of thrombosis, infarction, AR or graft survival. In the study of biomarkers for AR, whole blood samples were prospectively collected from adult kidney Tx patients. With real-time quantitative PCR (RT-QPCR) gene expression quantities of CD154 and ICOS differentiated the patients with AR from those without, but not from the patients with other causes of graft dysfunction. Biomarkers for SCR were studied in paediatric kidney Tx patients. We used RT-QPCR to quantify the gene expression of immunological candidate genes in a low-density array format. In addition, we used RT-QPCR to validate the results of the microarray analysis. No gene marker differentiated patients with SCR from those without SCR. This research demonstrates the lack of robust markers among polymorphisms or biomarkers in investigated genes that could be included in routine analysis in a clinical laboratory. In genetic studies, kidney Tx can be regarded as a complex trait, i.e. several environmental and genetic factors may determine its outcome. A number of currently unknown genetic factors probably influence the results of Tx.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to be a multifactorial disease, both environment and genetics play a role in its pathogenesis. Despite several decades of intense research, the etiological and pathogenic mechanisms underlying MS remain still largely unknown and no curative treatment exists. The genetic architecture underlying MS is complex with multiple genes involved. The strongest and the best characterized predisposing genetic factors for MS are located, as in other immune-mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In humans MHC is called human leukocyte antigen (HLA). Alleles of the HLA locus have been found to associate strongly with MS and remained for many years the only consistently replicable genetic associations. However, recently other genes located outside the MHC region have been proposed as strong candidates for susceptibility to MS in several studies. In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 (IRF5), was identified in the susceptibility to MS. In particular, we found that common variation of the gene was associated with the disease in three different populations, Spanish, Swedish and Finnish. We also suggested a possible functional role for one of the risk alleles with impact on the expression of the IRF5 locus. Previous studies have pointed out a possible role played by chromosome 2q33 in the susceptibility to MS and other autoimmune disorders. The work described here also investigated the involvement of this chromosomal region in MS predisposition. After the detection of genetic association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide polymorphism (SNP) mapping to define further the contribution of this genomic area to disease pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is needed for ligand binding. The stability of the newly-identified transcript variant and its subcellular localization were analyzed. These studies indicated that the novel isoform is stable and shows different subcellular localization as compared to full-length ICOS. The novel isoform might have a regulatory function, but further studies are required to elucidate its function. Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS predisposition. In several populations, suggestive linkage signals between MS predisposition and 19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family based association analysis in 782 MS families collected from Finland. In this dataset, we were not able to detect any statistically significant associations, although several previously suggested markers were included to the analysis. Replication of the previous findings on the basis of linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be required for elucidating the role of chromosome 19q13 with MS. This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the mediators of interferons biological function. In addition to providing new insight in the possible pathogenetic pathway of the disease, this finding suggests that there might be common mechanisms between different immune-mediated disorders. Furthermore the work presented here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover its functions and possible involvement of the ICOS locus in MS susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer (PCa) is the most commonly diagnosed non-skin cancer and second leading cause of cancer-related death of men in developed countries. Measurement of prostate specific antigen (PSA) is a very sensitive method for diagnosing and monitoring of prostate cancer (PCa), but the specificity needs improvement. Measurements of different molecular forms of PSA have been shown to improve differentiation between PCa and benign prostatic diseases. However, accurate measurement of some isoforms has not been achieved in previous assays. The aim of the present study was to develop new assays that reliably measure enzymatically active PSA, PSA-α1-chymotryposin (PSA-ACT) and PSA-α1-protease inhibitor (PSA-API), and to evaluate their diagnostic value. Double-label immunofluorometric assays using a novel monoclonal antibody (MAb) and another antibody to either free PSA (fPSA) or total PSA (tPSA) were developed and used to measure PSA-ACT and fPSA or tPSA at the same time. These assays provide enough sensitivity for measurement of PSA-ACT in sera with low PSA levels. The results obtained confirmed that proportion of PSA-ACT to tPSA (%PSA-ACT) was as useful as proportion of fPSA to tPSA (%fPSA) for discrimination between PCa and benign prostatic hyperplasia (BPH). We developed an immunoassay for detection of PSA-API based on proximity ligation, which improved assay sensitivity 10-fold compared with conventional assays. Our results confirmed previous findings that the PSA-API level is somewhat lower in men with than without PCa, and the combination of %fPSA and proportion of PSA-API to tPSA (%PSA-API) provides diagnostic improvement compared with either method alone. Assays based on this principle should be applicable to other immunoassays in which the nonspecific background is a problem. An immunopeptidometric sandwich assay (IPMA) was developed to measure the enzymatically active PSA. This assay showed high specificity, but sensitivity was not good enough for measurement of PSA concentrations in the gray zone, 2-10 µg/L, in which tPSA does not efficiently differentiate between PCa and BPH. We further developed a solid-phase proximity ligation immunoassay, which provided a 10-fold improvement in sensitivity. This proof of concept study shows that peptides reacting with proteins are potentially useful for sensitive and specific measurement of protein variants for which specific MAbs cannot be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clozapine is the most effective drug in treating therapy-resistant schizophrenia and may even be superior to all other antipsychotics. However, its use is limited by a high incidence (approximately 0.8%) of a severe hematological side effect, agranulocytosis. The exact molecular mechanism(s) of clozapine-induced agranulocytosis is still unknown. We investigated the mechanisms behind responsiveness to clozapine therapy and the risk of developing agranulocytosis by performing an HLA (human leukocyte antigens) association study in patients with schizophrenia. The first group comprised patients defined by responsiveness to first-generation antipsychotics (FGAs) (n= 19). The second group was defined by a lack of response to FGAs but responsiveness to clozapine (n=19). The third group of patients had a history of clozapine-induced granulocytopenia or agranulocytosis (n=26). Finnish healthy blood donors served as controls (n= 120). We found a significantly increased frequency of HLA-A1 among patients who were refractory to FGAs but responsive to clozapine. We also found that the frequency of HLA-A1 was low in patients with clozapine-induced neutropenia or agranulocytosis. These results suggest that HLA-A1 may predict a good therapeutic outcome and a low risk of agranulocytosis and therefore HLA typing may aid in the selection of patients for clozapine therapy. Furthermore, in a subgroup of schizophrenia, HLA-A1 may be in linkage disequilibrium with some vulnerability genes in the MHC (major histocompatibility complex) region on chromosome 6. These genes could be involved in antipsychotic drug response and clozapine-induced agranulocytosis. In addition, we investigated the effect of clozapine on gene expression in granulocytes by performing a microarray analysis on blood leukocytes of 8 schizophrenic patients who had started clozapine therapy for the first time. We identified an altered expression in 4 genes implicated in the maturation or apoptosis of granulocytes: MPO (myeloperoxidase precursor), MNDA (myeloid cell nuclear differentiation antigen), FLT3LG (Fms-related tyrosine kinase 3 ligand) and ITGAL (antigen CD11A, lymphocyte function-associated antigen 1). The altered expression of these genes following clozapine administration may suggest their involvement in clozapine-induced agranulocytosis. Finally, we investigated whether or not normal human bone marrow mesenchymal stromal cells (MSC) are sensitive to clozapine. We treated cultures of human MSCs and human skin fibroblasts with 10 µM of unmodified clozapine and with clozapine bioactivated by oxidation. We found that, independent of bioactivation, clozapine was cytotoxic to MSCs in primary culture, whereas clozapine at the same concentration stimulated the growth of human fibroblasts. This suggests that direct cytotoxicity to MSCs is one possible mechanism by which clozapine induces agranulocytosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the genes in the MHC region are involveed in adaptive and innate immunity, with essential function in inflammatory reactions and in protection against infections. These genes might serve as a candidate region for infection and inflammation associated diseases. CAD is an inflammatory disease. The present set of studies was performed to assess whether the MHC region harbors genetic markers for CAD, and whether these genetic markers explain the CAD risk factors: e.g., C. pneumoniae, periodontitis, and periodontal pathogens. Study I was performed using two separate patient materials and age- and sex-matched healthy controls, categorizing them into two independent studies: the HTx and ACS studies. Both studies consistently showed the HLA-A3– B35– DR1 (35 ancestral haplotype) haplotype as a susceptible MHC genetic marker for CAD. HLA-DR1 alone was associated not only with CAD, but also with CAD risk factor diseases, e.g., diabetes mellitus, and hyperlipidemia. The ACS study further showed the HLA-B*07 and -DRB1*15 -related haplotype as a protective MHC haplotype for CAD. Study II showed that patients with CAD showed signs of chronic C. pneumoniae infection when compared to age- and sex-matched healthy controls. HLA-B*35 or -related haplotypes associated with the C. pneumoniae infection markers. Among these haplotype carriers, males and smokers associated with elevated C. pneumoniae infection markers. Study III showed that CAD patients with periodontitis had elevated serum markers of P. gingivalis and occurrence of the pathogen in saliva. LTA+496C strongly associated with periodontitis, while HLA-DRB1*01 with periodontitis and with the elevated serum antibodies of P. gingivalis. Study IV showed that the increased level of C3/C4 ratio was a new risk factor and was associated with recurrent cardiovascular end-points. The increased C3 and decreased C4 concentrations in serum explained the increased level of the C3/C4 ratio. Both the higher than cut-off value (4.53) and the highest quartile of the C3/C4 ratio were also associated with worst survival, increased end-points, and C4 null alleles. The presence of C4 null alleles associated with decreased serum C4 concentration, and increased C3/C4 ratio. In conclusion, the present studies show that the CAD susceptibility haplotype (HLA-A3− B35− DR1 -related haplotypes, Study I) partially explains the development of CAD in patients possessing several recognized and novel risk factors: diabetes mellitus, increased LDL, smoking, C4B*Q0, C. pneumnoiae, periodontitis, P. gingivalis, and complement C3/C4 ratio (Study II, III, and IV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute renal failure (ARF) is a clinical syndrome characterized by rapidly decreasing glomerular filtration rate, which results in disturbances in electrolyte- and acid-base homeostasis, derangement of extracellular fluid volume, and retention of nitrogenous waste products, and is often associated with decreased urine output. ARF affects about 5-25% of patients admitted to intensive care units (ICUs), and is linked to high mortality and morbidity rates. In this thesis outcome of critically ill patients with ARF and factors related to outcome were evaluated. A total of 1662 patients from two ICUs and one acute dialysis unit in Helsinki University Hospital were included. In study I the prevalence of ARF was calculated and classified according to two ARF-specific scoring methods, the RIFLE classification and the classification created by Bellomo et al. (2001). Study II evaluated monocyte human histocompatibility leukocyte antigen-DR (HLA-DR) expression and plasma levels of one proinflammatory (interleukin (IL) 6) and two anti-inflammatory (IL-8 and IL-10) cytokines in predicting survival of critically ill ARF patients. Study III investigated serum cystatin C as a marker of renal function in ARF and its power in predicting survival of critically ill ARF patients. Study IV evaluated the effect of intermittent hemodiafiltration (HDF) on myoglobin elimination from plasma in severe rhabdomyolysis. Study V assessed long-term survival and health-related quality of life (HRQoL) in ARF patients. Neither of the ARF-specific scoring methods presented good discriminative power regarding hospital mortality. The maximum RIFLE score for the first three days in the ICU was an independent predictor of hospital mortality. As a marker of renal dysfunction, serum cystatin C failed to show benefit compared with plasma creatinine in detecting ARF or predicting patient survival. Neither cystatin C nor plasma concentrations of IL-6, IL-8, and IL-10, nor monocyte HLA-DR expression were clinically useful in predicting mortality in ARF patients. HDF may be used to clear myoglobin from plasma in rhabdomyolysis, especially if the alkalization of diuresis does not succeed. The long-term survival of patients with ARF was found to be poor. The HRQoL of those who survive is lower than that of the age- and gender-matched general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Well-known risk factors include tobacco smoking and alcohol consumption. Overall survival has improved, but is still low especially in developing countries. One reason for this is the often advanced stage of the disease at the time of diagnosis, but also lack of reliable prognostic tools to enable individualized patient treatment to improve outcome. To date, the TNM classification still serves as the best disease evaluation criterion, although it does not take into account the molecular basis of the tumor. The need for surrogate molecular markers for more accurate disease prediction has increased research interests in this field. We investigated the prevalence, physical status, and viral load of human papillomavirus (HPV) in HNSCC to determine the impact of HPV on head and neck carcinogenesis. The prevalence and genotyping of HPV were assessed with an SPF10 PCR microtiter plate-based hybridization assay (DEIA), followed by a line probe-based genotyping assay. More than half of the patients had HPV DNA in their tumor specimens. Oncogenic HPV-16 was the most common type, and coinfections with other oncogenic and benign associated types also existed. HPV-16 viral load was unevenly distributed among different tumor sites; the tonsils harbored significantly greater amounts of virus than other sites. Episomal location of HPV-16 was associated with large tumors, and both integrated and mixed forms of viral DNA were detected. In this series, we could not show that the presence of HPV DNA correlated with survival. In addition, we investigated the prevalence and genotype of HPV in laryngeal carcinoma patients in a prospective Nordic multicenter study based on fresh-frozen laryngeal tumor samples to determine whether the tumors were HPV-associated. These patients were also examined and interviewed at diagnosis for known risk factors, such as tobacco smoking and alcohol consumption, and for several other habituations to elucidate their effects on patient survival. HPV analysis was performed with the same protocols as in the first study. Only 4% of the specimens harbored HPV DNA. Heavy drinking was associated with poor survival. Heavy drinking patients were also younger than nonheavy drinkers and had a more advanced stage of disease at diagnosis. Heavy drinkers had worse oral hygiene than nonheavy drinkers; however, poor oral hygiene did not have prognostic significance. History of chronic laryngitis, gastroesophageal reflux disease, and orogenital sex contacts were rare in this series. To clarify why vocal cord carcinomas seldom metastasize, we determined tumor lymph vessel (LVD) and blood vessel (BVD) densities in HNSCC patients. We used a novel lymphatic vessel endothelial marker (LYVE-1 antibody) to locate the lymphatic vessels in HNSCC samples and CD31 to detect the blood microvessels. We found carcinomas of the vocal cords to harbor less lymphatic and blood microvessels than carcinomas arising from sites other than vocal cords. The lymphatic and blood microvessel densities did not correlate with tumor size. High BVD was strongly correlated with high LVD. Neither BVD nor LVD showed any association with survival in our series. The immune system plays an important role in tumorigenesis, as neoplastic cells have to escape the cytotoxic lymphocytes in order to survive. Several candidate HLA class II alleles have been reported to be prognostic in cervical carcinomas, an epithelial malignancy resembling HNSCC. These alleles may have an impact on head and neck carcinomas as well. We determined HLA-DRB1* and -DQB1* alleles in HNSCC patients. Healthy organ donors served as controls. The Inno-LiPA reverse dot-blot kit was used to identify alleles in patient samples. No single haplotype was found to be predictive of either the risk for head and neck cancer, or the clinical course of the disease. However, alleles observed to be prognostic in cervical carcinomas showed a similar tendency in our series. DRB1*03 was associated with node-negative disease at diagnosis. DRB1*08 and DRB1*13 were associated with early-stage disease; DRB1*04 had a lower risk for tumor relapse; and DQB1*03 and DQB1*0502 were more frequent in controls than in patients. However, these associations reached only borderline significance in our HNSCC patients.